40行代码的人脸识别实践

简单介绍一下如何在如何在40行代码以内简单地实现人脸识别

Posted by Noah Zhang on January 22, 2018

40行代码的人脸识别实践

前言

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。

一点区分

对于大部分人来说,区分人脸检测和人脸识别完全不是问题。但是网上有很多教程有无无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。今天我们要做的是人脸识别。

测试环境

  • Ubuntu MATE

所用工具

  • Python3
  • Dlib
  • scikit-image

开始之前

请先确保安装了cmake

sudo apt-get install build-essential cmake

Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib 是基于现代 C++ 的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib 内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib 的文档非常完善,例子非常丰富。就像很多库一样,Dlib 也提供了 Python 的接口,安装非常简单,用pip只需要一句即可:

sudo pip3 install dlib

scikit-image

需要用到的scikit-image同样只是需要这么一句:

sudo pip3 install scikit-image
  • 注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。

人脸识别

之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

.
├── candidate-faces
│   ├── girl1.jpg
│   ├── girl2.jpg
│   ├── girl3.jpg
│   ├── girl4.jpg
│   ├── girl5.jpg
│   └── girl6.jpg
├── dlib_face_recognition_resnet_model_v1.dat
├── girl-face-rec.py
├── shape_predictor_68_face_landmarks.dat.dat
└── test1.jpg

1 directory, 10 files

准备了六个候选人的图片放在candidate-faces文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py是我们的 Python 脚本。shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。dlib_face_recognition_resnet_model_v1.dat是训练好的 ResNet 人脸识别模型。ResNet 是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。

前期准备

shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。

本文这里准备的是六张图片,如下:

她们分别是:

'Zhang Jing Chu','Emma Watson','Marilyn Monroe','Audrey Hepburn','Gabriella Wilde','Han Ga In'

识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:

  • 先对候选人进行人脸检测、关键点提取、描述子生成后,把候选人描述子保存起来。
  • 然后对测试人脸进行人脸检测、关键点提取、描述子生成。
  • 最后求测试图像人脸描述子和候选人脸描述子之间的欧氏距离,距离最小者判定为同一个人。

代码

代码不做过多解释,因为已经注释的非常完善了。以下是girl-face-rec.py

# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io

if len(sys.argv) != 5:
    print("请检查参数是否正确")
    exit()

# 1.人脸关键点检测器

predictor_path = sys.argv[1]

# 2.人脸识别模型

face_rec_model_path = sys.argv[2]

# 3.候选人脸文件夹

faces_folder_path = sys.argv[3]

# 4.需识别的人脸

img_path = sys.argv[4]

# 1.加载正脸检测器

detector = dlib.get_frontal_face_detector()

# 2.加载人脸关键点检测器

sp = dlib.shape_predictor(predictor_path)

# 3. 加载人脸识别模型

facerec = dlib.face_recognition_model_v1(face_rec_model_path)

# win = dlib.image_window()

# 候选人脸描述子list

descriptors = []

# 对文件夹下的每一个人脸进行:

# 1.人脸检测

# 2.关键点检测

# 3.描述子提取

for f in sorted(glob.glob(os.path.join(faces_folder_path, "*.jpg"))):
    print("Processing file: {}".format(f))
    img = io.imread(f)
    #win.clear_overlay()
    #win.set_image(img)

    # 1.人脸检测
    dets = detector(img, 1)
    print("Number of faces detected: {}".format(len(dets)))

    for k, d in enumerate(dets):  
        # 2.关键点检测
        shape = sp(img, d)
        # 画出人脸区域和和关键点
        # win.clear_overlay()
        # win.add_overlay(d)
        # win.add_overlay(shape)

        # 3.描述子提取,128D向量
        face_descriptor = facerec.compute_face_descriptor(img, shape)

        # 转换为numpy array
        v = numpy.array(face_descriptor)  
        descriptors.append(v)

# 对需识别人脸进行同样处理

# 提取描述子,不再注释

img = io.imread(img_path)
dets = detector(img, 1)

dist = []
for k, d in enumerate(dets):
    shape = sp(img, d)
    face_descriptor = facerec.compute_face_descriptor(img, shape)
    d_test = numpy.array(face_descriptor) 

    # 计算欧式距离
    for i in descriptors:
        dist_ = numpy.linalg.norm(i-d_test)
        dist.append(dist_)

# 候选人名单

candidate = ["Zhang Jing Chu","Emma Watson","Marilyn Monroe","Audrey Hepburn","Gabriella Wilde","Han Ga In"]

# 候选人和距离组成一个dict

c_d = dict(zip(candidate,dist))

cd_sorted = sorted(c_d.items(), key=lambda d:d[1])
print("\n The person is: ", cd_sorted[0][0])
dlib.hit_enter_to_continue()

运行结果

我们在.py所在的文件夹下打开命令行,运行如下命令

python3 girl-face-rec.py 1.dat 2.dat ./candidate-faces test1.jpg

由于shape_predictor_68_face_landmarks.datdlib_face_recognition_resnet_model_v1.dat名字实在太长,所以我把它们重命名为1.dat2.dat

运行结果如下:

记忆力不好的同学可以翻上去看看test1.jpg是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,有些图输出结果都是非常理想的。但也会有的图片输出结果并不正确。机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。

参考:http://blog.csdn.net/xingchenbingbuyu/article/details/68482838